4D Embroidery

4D Embroidery: Implementing Parametric Structures in Textiles for Sculptural Embroidery

4D Embroidery, a method to create sculptural 3D structures from a flat sheet of fabric by parameterizing an open-lace embroidery framework. By adding a fourth dimension to a mesh-like texture in textiles, lace has the potential to exhibit a wide range of transformation behavior for actuation. However, digital embroidery is not widely adopted as a technique central to fabricating 4D structures. This study presents a design exploration of the methodologies for implementing parametric structures in self-assembling textiles. We propose a digital fabrication process via embroidering active and passive material, accompanied by a computational design tool to achieve a target shape-change. We reflect on the design process and present future directions for research.

ISWC2022Poster

Ayesha Nabila, Hua Ma, and Junichi Yamaoka. 2023. 4D Embroidery: Implementing Parametric Structures in Textiles for Sculptural Embroidery. In Adjunct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2022 ACM International Symposium on Wearable Computers (UbiComp/ISWC ’22 Adjunct). Association for Computing Machinery, New York, NY, USA, 88–90. https://doi.org/10.1145/3544793.3560358

Food Print in Dialogue

その日の気分や感情に応じて、適切な形の食べ物を印刷するフードプリンタです。画面上に映し出されたキャラクタと会話することでユーザの感情を推測して、最適な形状やメッセージを食べ物の上に印刷します。例えば、自然な会話の中から疲れたことを認識して励ますようなメッセージを印刷します。

This food printer prints appropriately shaped food according to the user’s mood or emotion of the day. By conversing with a character displayed on the screen, the printer estimates the user’s emotions and prints the most appropriate shape and message on the food. For example, it recognizes that the user is tired from a natural conversation and prints an encouraging message.

チェン ジウェイ、山岡 潤一 (2022)

この研究はバンダイナムコ研究所との共同研究成果です。 Collaboration with Bandai Namco Research Inc.

TESE

TESE: 機械学習とデジタルファブリケーション技術を活用したアイヌ文様の学習/制作支援ツール

本研究では画像生成アルゴリズムを活用したアイヌ文化の新しい学習体験とデジタルファブリケーションを活用した新たな制作体験を提案する。近年アイヌ文化は衰退の一途を辿っており、職人の高齢化、文化継承者不足、職人家系ではない若年層アイヌの伝承活動の参入が難しいことから課題は複雑化しており、これらを解消するべく工芸学習の整備を行う必要があると考察した。そこで、DCGAN やPIX2PIX といった画像生成アルゴリズムを用いることでアイヌ文様の自動生成や、アイヌ刺繍完成予想図の生成を行い、複雑な技法を持つアイヌ刺繍や文様を従来よりも学びやすい環境を作り出すことが可能となった。

山口 泰朋,山岡 潤一 慶應義塾大学大学院メディアデザイン研究科

This study proposes a new learning experience of Ainu culture using image generation algorithms and a new production experience using digital fabrication. The Ainu culture has been in decline in recent years, and the issues are complicated by the aging of artisans, the lack of cultural inheritors, and the difficulty for younger Ainu who do not come from artisan families to participate in activities to pass on the culture, and we considered the need to develop craft learning to resolve these issues. Therefore, it is necessary to create an environment that facilitates the learning of Ainu embroidery, which is a complex technique, by using image generation algorithms such as DCGAN and PIX2PIX to automatically generate Ainu patterns and to generate a forecast of the finished Ainu embroidery.

Yasutomo Yamaguchi, Junichi Yamaoka

Conference on 4D and Functional Fabrication 2022 (4DFF2022)